- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Thapa, Dinesh (3)
-
Kilina, Svetlana (2)
-
Addaman, Christopher K (1)
-
Adhikari, Chandra M (1)
-
Alexander, Talon D (1)
-
Andaraarachchi, Himashi (1)
-
Autrey, Daniel E (1)
-
Bastakoti, Bishnu P (1)
-
Cameron, Thomas (1)
-
Gautam, Bhoj R (1)
-
Han, Shubo (1)
-
Kilin, Dmitri (1)
-
Klause, Bailey (1)
-
Kortshagen, Uwe R. (1)
-
Oas, Victoria (1)
-
Rai, Binod K (1)
-
Reed, Carter (1)
-
Westra, Steven (1)
-
Wu, Chi-Chin (1)
-
Xiong, Zichang (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Metal carbides, nitrides, or carbonitrides of early transition metals, better known as MXenes, possess notable structural, electrical, and magnetic properties. Analyzing electronic structures by calculating structural stability, band structure, density of states, Bader charge transfer, and work functions utilizing first principle calculations, we revealed that titanium nitride MXenes, namely TiN and TiN, have excess anionic electrons in their lattice voids, making them MXene electrides. Bulk TiN has competing antiferromagnetic (AFM) and ferromagnetic(FM) configurations with slightly more stable AFM configuration, while the TiN MXene is nonmagnetic. Although TiN favors AFM configuration with hexagonal crystal systems having point group symmetry, TiN does not support altermagnetism. The monolayer of the TiN MXene is a ferromagnetic electride. These unique properties of having non-nuclear interstitial anionic electrons in the electronic structure of titanium nitride MXene have not yet been reported in the literature. Density functional theory calculations show TiN is neither an electride, MXene, or magnetic.more » « lessFree, publicly-accessible full text available January 13, 2027
-
Cameron, Thomas; Klause, Bailey; Andaraarachchi, Himashi; Xiong, Zichang; Reed, Carter; Thapa, Dinesh; Wu, Chi-Chin; Kortshagen, Uwe R. (, Nanotechnology)Abstract Uniform-size, non-native oxide-passivated metallic aluminum nanoparticles (Al NPs) have desirable properties for fuel applications, battery components, plasmonics, and hydrogen catalysis. Nonthermal plasma-assisted synthesis of Al NPs was previously achieved with an inductively coupled plasma (ICP) reactor, but the low production rate and limited tunability of particle size were key barriers to the applications of this material. This work focuses on the application of capacitively coupled plasma (CCP) to achieve improved control over Al NP size and a ten-fold increase in yield. In contrast with many other materials, where NP size is controlled via the gas residence time in the reactor, the Al NP size appeared to depend on the power input to the CCP system. The results indicate that the CCP reactor assembly, with a hydrogen-rich argon/hydrogen plasma, was able to produce Al NPs with diameters that were tunable between 8 and 21 nm at a rate up ∼ 100 mg h−1. X-ray diffraction indicates that a hydrogen-rich environment results in crystalline metal Al particles. The improved synthesis control of the CCP system compared to the ICP system is interpreted in terms of the CCP’s lower plasma density, as determined by double Langmuir probe measurements, leading to reduced NP heating in the CCP that is more amenable to NP nucleation and growth.more » « less
-
Thapa, Dinesh; Westra, Steven; Oas, Victoria; Kilin, Dmitri; Kilina, Svetlana (, ACS Omega)
An official website of the United States government
